
Putting Condor into a
Container

Applying Virtualization Techniques to Batch Systems
Brian Bockelman, UNL

Thursday, January 26, 12

This is a talk about
Virtualization

• This is not a talk about virtual machines.

Thursday, January 26, 12

To Virtualize

• virtualize |ˈvərCHo͞oəˌlīz|

• verb [with obj.]

• create a virtual version of (a computing
resource or facility).

• We will be virtualizing the worker node,
but not by using virtual machines.

Thursday, January 26, 12

Containers,
Broadly Speaking

• Partition system resources using the host
kernel.

• Do not run a complete virtual machine
with separate kernel, but run isolated user
processes partitioned from the rest of the
system.

• It creates a virtualized userland environment,
but all containers share the same kernel.

Defacto “implementation”: http://lxc.sourceforge.net/

Thursday, January 26, 12

http://lxc.sourceforge.net/
http://lxc.sourceforge.net/

Containers

• Often, this is used to invoke a root-level process (init)
and a separate mount table/chroot to run a completely
virtualized machine.

• While a separate namespace is seen, you can use one
file system managed by one kernel. The overhead
compared to a virtualized file system is negligible.

• Nor do you have to give the process access to
the physical device, like you would to optimize
KVM I/O (see recent kernel DoS attacks and
security holes for motivation).

Thursday, January 26, 12

Another Example
• The Linux kernel does lots of work to maximize memory

utilization.

• When using virtual machines, the host kernel doesn’t necessarily
have the necessary information about the guest systems beyond
the original resource request.

• Virtualized applications can give hints to the guest OS about
what it considers un-important, but the guest can’t pass this
information to the host.

• Mild amounts of memory overcommit - important in Linux -
can lead to priority inversion between guests. The host kernel
doesn’t know which pages are “nice, but unimportant” to the
guests.

Thursday, January 26, 12

Process View
Outside

sh-4.2# ps faux
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
root 1 0.0 0.0 116492 1964 pts/1 S 06:33 0:00 /bin/sh
root 3 0.0 0.0 115660 1076 pts/1 R+ 06:34 0:00 ps faux

Inside

root 949 0.0 0.0 75320 576 ? Ss 2011 0:15 /usr/sbin/sshd -D
root 29796 0.0 0.1 123840 4432 ? S 06:27 0:00 _ sshd: bbockelm [priv]
bbockelm 29803 0.0 0.0 123840 2096 ? S 06:27 0:00 | _ sshd: bbockelm@pts/1
bbockelm 29804 0.0 0.0 116508 2212 pts/1 Ss 06:27 0:00 | _ -bash
root 29964 0.0 0.0 155920 2096 pts/1 S 06:33 0:00 | _ sudo ./ns_exec -cpm /bin/sh
root 29965 0.0 0.0 4272 340 pts/1 S 06:33 0:00 | _ ./ns_exec -cpm /bin/sh
root 29966 0.0 0.0 116492 1964 pts/1 S+ 06:33 0:00 | _ /bin/sh

CLI-based example, but same holds true for containers.
Wouldn’t it be nice if the batch system did this? :)

Thursday, January 26, 12

Filesystem View
• Containers typically use chroot to provide

a completely unique filesystem.

[root@red-d15n2 ~]# ls /
bin cgroup cvmfs etc lib lost+found misc net proc sbin srv tmp var
boot chroot dev home lib64 media mnt opt root selinux sys usr
[root@red-d15n2 ~]# ls /chroot/sl5-v1/root/
bin boot builddir dev etc home lib lib64 media mnt opt proc root sbin selinux srv sys tmp usr var
[root@red-d15n2 ~]# chroot /chroot/sl5-v1/root/
bash-3.2# ls /
bin boot builddir dev etc home lib lib64 media	 mnt opt proc	 root sbin selinux srv sys tmp usr var

Thursday, January 26, 12

Partitioning

• Containers typically take advantage of the resource
partitioning features available in newer kernels.

• These are typically implemented via “control
groups”, or “cgroups”.

• Cgroups are control structures for managing sets of
processes in a Linux system.

• Different cgroup subsystems (“controllers”) may act
on these structures to control scheduler policy,
allocate/limit resources, or account for usage.
http://en.wikipedia.org/wiki/Cgroups

http://www.kernel.org/doc/Documentation/cgroups/
cgroups.txt

Thursday, January 26, 12

http://en.wikipedia.org/wiki/Cgroups
http://en.wikipedia.org/wiki/Cgroups
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt

Cgroups Quick Intro
• The interface to cgroups is not a syscall, but a pseudo-

filesystem (like /proc):

• The above lines mount the cgroup controller, create a sub-
cgroup called “example_session”, and place the current shell
in that cgroup. Any activity started by this session (regardless
of daemonized or not!) will be managed by the “blkio”
controller. No, I didn’t say what blkio does yet...

• Each cgroup is a directory in the filesystem (provides familiar
semantics like sub-directories, Unix permissions to manage
the cgroup). Processes in the cgroup appear in the “tasks”
file.

mkdir -p /cgroup/blkio
mount -t cgroup -o blkio /cgroup/blkio
mkdir /cgroup/blkio/example_session
echo $$ > /cgroup/blkio/example_session/tasks

Thursday, January 26, 12

Goal: Containerize
Condor

• We want to expose the various partitioning
and management techniques in the Linux
kernel to Condor, allowing it to better
manage CMS jobs.

• Think of it as a “blend” between a
“normal” batch job and a container, to
give Condor batch jobs features normally
associated with virtualization.

Thursday, January 26, 12

Containers in Condor

• I break up the work for “containerizing
Condor” into three categories:

• Isolation. Protecting jobs from each other.

• Accounting. Understanding the resources
the batch jobs use.

• Resource Management. Implementing
policies about what resources and how
much the jobs can access.

Thursday, January 26, 12

Isolation
• Today, we offer isolation via giving a different UID

to a batch job.

• In fact, we’ve been doing this for a LONG time
on Linux. We understand this model VERY well.

• Sometimes we do isolation via “social pressures”
when appropriate.

• Maybe this is incomprehensible to the WLCG
crowd, but let’s remember it’s sometimes
appropriate.

Thursday, January 26, 12

Isolation Models!

• Other isolation models exist though! Think
again about what containers provide:

• Process isolation (“PID Namespaces”).

• Filesystem isolation. Users see different
mounts.

Thursday, January 26, 12

PID Namespaces
• When creating the process, Condor adds a new flag to

clone().

• Processes are isolated to their own little world.

• Cannot signal/mess with anyone else on the node, even if
they are running with the same UID.

• Great, easy, but actually disruptive to mess with clone() in the
Condor code because the child no longer knows its “correct”
PID.

• Actually, knowing the PID has been a place where this
patch is contentious! Think about the possible debugging
headaches!

Thursday, January 26, 12

Filesystem Namespaces

• One thing you could do is a chroot per
batch slot.

• Erm, not so nice!

• Let’s use the fact that mounts unique to
the job are tied to the job’s lifetime.

• Interesting mounts:

• World writable dirs: /tmp, /var/tmp.

• Working directories of other jobs from
the same user.Thursday, January 26, 12

Chroots
• In Condor 7.7.5, users will be able to request a specific

chroot.

• The sysadmins assign each chroot they have setup a
name (such as “SL5”)

• The user adds “+RequestedChroot=SL5” to their
submit file.

• Not feasible/convenient for isolation, but does allow
you to provide SL5 environments to users who need
it, but still run the newer kernel to do everything
mentioned in this presentation.

Thursday, January 26, 12

Mount Under Scratch

• In Condor 7.7.5, we introduce the
MOUNT_UNDER_SCRATCH config
parameter to the sysadmin.

• Any directory in the list will be mounted
from the job’s scratch directory (auto-
cleaned by Condor after the job).

• Equivalent to:
mount --bind /var/lib/execute/condor/execute/dir_1234/tmp \
 /tmp

Thursday, January 26, 12

No More Leaked Junk
in /tmp!

• Sysadmins rejoice!

Thursday, January 26, 12

Accounting

• We’ve done a poor job of accounting.

• CPU accounting is actually OK:

• Polling frequently enough, we can
provide fairly accurate accounting,
except in malicious or “strange” cases.

• Memory accounting is HORRIBLE!

Of course, who decides
what is strange!

Traditionally, Linux has some nice statistics per process.
However, we want this per job. Let’s discuss how!

Thursday, January 26, 12

CPU accounting, pre
Condor 7.7.0

• Every 15 seconds, a snapshot of all processes is
taken.

• Ancestry is established by looking at the parent
PID for each process (and a few other techniques).

• Of course, isn’t very perfect!

• Look at how much CPU or memory is used by
each process.

• Total “per-job” is the sum of all processes in the
job.

Thursday, January 26, 12

Memory Mess

• Summing up processes’s memory attributes
is a MESS in Linux.

• This does not take into account sharing
between processes. In a modern Linux
system - and in today’s jobs - there is a lot
of sharing.

• Makes today’s batch systems wildly
inaccurate for accounting.

Thursday, January 26, 12

Condor in 7.7.0

• Create a cgroup per job relative to a base cgroup
(admin-configured). Base cgroup is done so you
can manage Condor separately from the system.

• Somewhat equivalent to the following:

[root@red-d15n2 ~]# mkdir -p /cgroup/memory/condor/job_1234_5
[root@red-d15n2 ~]# echo $$ > /cgroup/memory/condor/job_1234_5/tasks
[root@red-d15n2 ~]# cat /cgroup/memory/condor/job_1234_5/tasks
13314
16521
[root@red-d15n2 ~]# bash
[root@red-d15n2 ~]# cat /cgroup/memory/condor/job_1234_5/tasks
13314
16522
16531

Thursday, January 26, 12

Memory Accounting

• Tons of statistics can be mined from the
memory controller and passed back to
Condor.

[root@red-d15n2 ~]# cat /cgroup/memory/condor/memory.stat
cache 0
rss 634880
mapped_file 0
pgpgin 602
pgpgout 447
swap 0
inactive_anon 0
active_anon 569344
inactive_file 0
active_file 0
unevictable 0
hierarchical_memory_limit 9223372036854775807
hierarchical_memsw_limit 9223372036854775807
total_cache 0
total_rss 634880
total_mapped_file 0
total_pgpgin 602
total_pgpgout 447
total_swap 0
total_inactive_anon 0
total_active_anon 569344
total_inactive_file 0
total_active_file 0
total_unevictable 0

Thursday, January 26, 12

Block I/O

• Similar story for block I/O. We can now
access the information per job instead of
per system or per process.

[root@red-d15n2 ~]# cat /cgroup/blkio/blkio.io_serviced
8:48 Read 383
8:48 Write 0
8:48 Sync 383
8:48 Async 0
8:48 Total 383
8:32 Read 383
8:32 Write 0
8:32 Sync 383
8:32 Async 0
8:32 Total 383
8:16 Read 548172
8:16 Write 930060
8:16 Sync 996051
8:16 Async 482181
8:16 Total 1478232
8:0 Read 614395
8:0 Write 1024232
8:0 Sync 1074539
8:0 Async 564088
8:0 Total 1638627
Total 3117625

Thursday, January 26, 12

Network Accounting

• We are extremely interested in knowing the
per-job network I/O figures:

• Helps us understand if site planning is right.

• Give appropriate information back to users
- and trace a bit about what they did on
the network.

• Compare costs, dollar-for-dollar, against
EC2.

http://osgtech.blogspot.com/2011/12/network-accounting-
for-condor.html

Thursday, January 26, 12

http://osgtech.blogspot.com/2011/12/network-accounting-for-condor.html
http://osgtech.blogspot.com/2011/12/network-accounting-for-condor.html
http://osgtech.blogspot.com/2011/12/network-accounting-for-condor.html
http://osgtech.blogspot.com/2011/12/network-accounting-for-condor.html

Network Namespaces
• What’s the solution? Namespaces!

• The “network namespace” is a namespace that
can interact with a subset of the network
devices on the system.

• The general idea is to create a per-job network
device, lock the job to that network device using
namespaces, and then do iptables-based
accounting for the network device.

• Approach is illustrated on next slides...

Thursday, January 26, 12

Network Namespaces:
Flipbook

Thursday, January 26, 12

Network Namespaces:
Flipbook

Thursday, January 26, 12

Network Namespaces:
Flipbook

Thursday, January 26, 12

Network Namespaces:
Flipbook

Thursday, January 26, 12

Network Namespaces:
Flipbook

Thursday, January 26, 12

Network Namespaces:
Flipbook

Thursday, January 26, 12

Accounting Portion

• Each time a packet passes through an
iptables rule, it is counted.

• While the job runs and finishes, iptables is
periodically read, and each rule is published
in the ClassAd.

• The final ClassAd goes to the accounting
system, and we can send the “EC2 bill”.

Thursday, January 26, 12

Resulting Chain
Chain JOB_12345 (2 references)
 pkts bytes target prot opt in out source destination
 3 579 ACCEPT all -- veth0 em1 anywhere 129.93.0.0/16 /* OutgoingInternal */
 0 0 ACCEPT all -- veth0 em1 anywhere !129.93.0.0/16 /* OutgoingExternal */
 7 674 ACCEPT all -- em1 veth0 129.93.0.0/16 anywhere state RELATED,ESTABLISHED /* IncomingInternal */
 0 0 ACCEPT all -- em1 veth0 !129.93.0.0/16 anywhere state RELATED,ESTABLISHED /* IncomingExternal */
 0 0 REJECT all -- any any anywhere anywhere reject-with icmp-port-unreachable

Resulting ClassAd Snippet

NetworkOutgoingInternal = 579
NetworkOutgoingExternal = 0

NetworkIncomingInternal = 674
NetworkIncomingExternal = 0

Thursday, January 26, 12

Mount Statistics*

• /proc/self/mountstats provides a wealth of statistics - differs per filesystem,
but NFS in particular provides a huge number of statistics (even for each op
type!)

• With FS namespaces, should be possible to start doing this “per job”.

* Future work! What NFS statistics do you want to
see from the batch system per-job?

device hcc-gridnfs:/osg/data mounted on /opt/osg/data with fstype nfs4 statvers=1.0
	 opts:
	
rw,vers=4,rsize=32768,wsize=32768,namlen=255,acregmin=3,acregmax=60,acdirmin=30,acdirmax=60,h
ard,proto=tcp,timeo=600,retrans=2,sec=sys,clientaddr=172.16.15.2,minorversion=0,local_lock=no
ne
	 age:	568167
	 caps:	 caps=0x7ff7,wtmult=512,dtsize=32768,bsize=0,namlen=255
	 nfsv4:	 bm0=0xfdffafff,bm1=0xf9be3e,acl=0x0
	 sec:	flavor=1,pseudoflavor=1
	 events:	 60 1 0 0 0 3 6 0
	 bytes:	 0 0 0 0 0 0 0 0
	 RPC iostats version: 1.0 p/v: 100003/4 (nfs)
	 xprt:	 tcp 0 0 31 0 0 84 84 0 84 0
	 per-op statistics

Thursday, January 26, 12

Resource Management

• POSIX provides few “handles” for resource
management.

• We can measure resources used (accounting).
Getting better.

• However, what happens when the process uses
more resources than requested? Outside killing
the job, not much!

• Thus, we encourage users to request the “worst
case resource usage”, leading to poorer utilization.

Not surprisingly, we’ll investigate what the kernel has been
up to!

Thursday, January 26, 12

CPU sets / affinity

• CPU sets are a fairly well-known
technique, used by most batch systems.

• If I ask for one core, I get access to
precisely one core.

• Very hard partitioning - if I sit idle, no
one else gets it. Can adversely affect
utilization.

Thursday, January 26, 12

CPU fairsharing!
• With the cpu cgroup controller, we can fairshare the

system’s overall CPU time.

• You can violate the amount of CPU you were
given if there’s time available, but the amount
allocated to each job.

• The amount of CPU you get are relative to the
number of shares you have in your sibling cgroups.

[root@red-d15n2 ~]# cat /cgroup/cpu/cpu.shares
1024
[root@red-d15n2 ~]# cat /cgroup/cpu/condor/cpu.shares
512
[root@red-d15n2 ~]# cat /cgroup/cpu/condor/job_1234_0/cpu.shares
128

Thursday, January 26, 12

Memory Management
• Consider this situation in Condor: 2 jobs

on a machine with 4GB RAM, asking for
2GB each. Consider the current usage:

Job 1
Job 2

2 GB

What happens if Job 2 allocates 1GB?

1 GB

Thursday, January 26, 12

Memory Management

• You could:

• (Today) Kill off Job 2.

• (Today) Do nothing. There is plenty of
memory on the system.

• (With memory cgroup) Swap out 1GB of
Job 2, there’s a hard limit.

Thursday, January 26, 12

Memory Management

Job 1 Job 2

2 GB

1 GB

What about if Job 2 allocates 1GB now?
The job must go into swap!

Today, you can kill the job or
Have random pages from both jobs swapped out.

With cgroups, you can also have a “soft limit” where
Job 2 can take up 250MB more of RAM, but then only

have Job 2 swap.
Thursday, January 26, 12

Memory in cgroups

• The memory cgroup provides both “soft”
and “hard” limits.

• Soft limits allow you to use idle RAM, but
when the system goes into swap, the
“nice” job might see some interruption.

• Hard limits forces the “bad job” to start
swapping once it hits 1-byte over the
limit.

Thursday, January 26, 12

Block I/O

• Perhaps unsurprisingly, the blkio controller
can also do fairshare.

• Currently, this is not recursive - you cannot
put Condor into /condor, and then
fairshare between the jobs. The jobs must
go at block level.

• Unknown: how well does swapping get
“fairshared”.

Thursday, January 26, 12

Process Killing

• It’s a side-topic, but if the batch system
leaks processes, you don’t manage the
resource well!

• With PID namespaces, if the initial
process (PID=1) dies, all other processes
in that namespace are wiped out.

• If not using PID namespaces, we can use
the “freeze” controller.

Thursday, January 26, 12

Freeze Controller

• Put the job in a cgroup with the freeze
controller.

• Write “FREEZE” into the correct file, and
the kernel will immediately remove all
processes from scheduler queue.

• Send a kill signal to all processes.

• Write “THAW” into the correct cgroup
file, and the signals are delivered atomically.

Thursday, January 26, 12

Network Management*
• The network accounting previously shown gives us a

fantastic handle: a network device per job.

• There are newer technologies - e.g. OpenFlow - that
expose the network as an API we can manipulate.

• Would be possible to dynamically create a VLAN for
a user’s set of jobs.

• Or, trivially, assign jobs to a static VLAN (CMS jobs
versus local jobs). No changes needed to the
network accounting work besides the script to
create the iptables chains.

*(Some) Future Work
Thursday, January 26, 12

What’s for Real?
• Things in a Condor release: Cgroups for CPU, block I/O and

memory accounting.

• Things committed for next release:
MOUNT_UNDER_SCRATCH, chroots

• Things proposed to team under evaluation: Cgroups for resource
management.

• Patches rejected by Condor team: PID namespaces

• Things on a github playground: Network namespaces

• Things being explored, not implemented: Dynamic network
manipulation with OpenFlow from the batch system, per-job NFS
mount statistics.

Thursday, January 26, 12

Conclusions

• We tend to view “the world” as black or white: is
it a batch job or a virtual machine?

• By using containers, we have the ability to mix
techniques normally associated with VMs into
batch jobs.

• The power of partitioning and isolation, without
the headaches of VM management.

• Basically, if you can do it in KVM (with respect
to partitioning), you can do it in Condor!

Thursday, January 26, 12

Conclusions
• This is completely different than clouds and virtual

machines.

• Still a great long life in front of these things!
Completely customize the OS, or your science
depends on some odd kernel feature. Let’s recall the
costs of maintaining VMs though!

• Condor will still launch virtual machines instead of a
process if asked.

• However, I believe this work makes significant progress,
and maybe make sites “less interested” in clouds!

Thursday, January 26, 12

