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This is a talk about 
Virtualization

• This is not a talk about virtual machines.
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To Virtualize

• virtualize |ˈvərCHo͞oəˌlīz|

• verb [ with obj. ]

• create a virtual version of (a computing 
resource or facility).

• We will be virtualizing the worker node, 
but not by using virtual machines.
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Containers,
Broadly Speaking

• Partition system resources using the host 
kernel.

• Do not run a complete virtual machine 
with separate kernel, but run isolated user 
processes partitioned from the rest of the 
system.

• It creates a virtualized userland environment, 
but all containers share the same kernel.

Defacto “implementation”: http://lxc.sourceforge.net/
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Containers

• Often, this is used to invoke a root-level process (init) 
and a separate mount table/chroot to run a completely 
virtualized machine.

• While a separate namespace is seen, you can use one 
file system managed by one kernel.  The overhead 
compared to a virtualized file system is negligible.

• Nor do you have to give the process access to 
the physical device, like you would to optimize 
KVM I/O (see recent kernel DoS attacks and 
security holes for motivation).
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Another Example
• The Linux kernel does lots of work to maximize memory 

utilization.

• When using virtual machines, the host kernel doesn’t necessarily 
have the necessary information about the guest systems beyond 
the original resource request.

• Virtualized applications can give hints to the guest OS about 
what it considers un-important, but the guest can’t pass this 
information to the host.

• Mild amounts of memory overcommit - important in Linux - 
can lead to priority inversion between guests.  The host kernel 
doesn’t know which pages are “nice, but unimportant” to the 
guests.
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Process View
Outside

sh-4.2# ps faux
USER       PID %CPU %MEM    VSZ   RSS TTY      STAT START   TIME COMMAND
root         1  0.0  0.0 116492  1964 pts/1    S    06:33   0:00 /bin/sh
root         3  0.0  0.0 115660  1076 pts/1    R+   06:34   0:00 ps faux

Inside

root       949  0.0  0.0  75320   576 ?        Ss    2011   0:15 /usr/sbin/sshd -D
root     29796  0.0  0.1 123840  4432 ?        S    06:27   0:00  \_ sshd: bbockelm [priv]
bbockelm 29803  0.0  0.0 123840  2096 ?        S    06:27   0:00  |   \_ sshd: bbockelm@pts/1
bbockelm 29804  0.0  0.0 116508  2212 pts/1    Ss   06:27   0:00  |       \_ -bash
root     29964  0.0  0.0 155920  2096 pts/1    S    06:33   0:00  |           \_ sudo ./ns_exec -cpm /bin/sh
root     29965  0.0  0.0   4272   340 pts/1    S    06:33   0:00  |               \_ ./ns_exec -cpm /bin/sh
root     29966  0.0  0.0 116492  1964 pts/1    S+   06:33   0:00  |                   \_ /bin/sh

CLI-based example, but same holds true for containers.
Wouldn’t it be nice if the batch system did this? :)
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Filesystem View
• Containers typically use chroot to provide 

a completely unique filesystem.

[root@red-d15n2 ~]# ls /
bin   cgroup  cvmfs  etc   lib    lost+found  misc  net  proc  sbin     srv  tmp  var
boot  chroot  dev    home  lib64  media       mnt   opt  root  selinux  sys  usr
[root@red-d15n2 ~]# ls /chroot/sl5-v1/root/
bin  boot  builddir  dev  etc  home  lib  lib64  media  mnt  opt  proc  root  sbin  selinux  srv  sys  tmp  usr  var
[root@red-d15n2 ~]# chroot /chroot/sl5-v1/root/
bash-3.2# ls /
bin  boot  builddir  dev  etc  home  lib  lib64  media	 mnt  opt  proc	 root  sbin  selinux  srv  sys  tmp  usr  var
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Partitioning

• Containers typically take advantage of the resource 
partitioning features available in newer kernels.

• These are typically implemented via “control 
groups”, or “cgroups”.

• Cgroups are control structures for managing sets of 
processes in a Linux system.

• Different cgroup subsystems (“controllers”) may act 
on these structures to control scheduler policy, 
allocate/limit resources, or account for usage.
http://en.wikipedia.org/wiki/Cgroups

http://www.kernel.org/doc/Documentation/cgroups/
cgroups.txt

Thursday, January 26, 12

http://en.wikipedia.org/wiki/Cgroups
http://en.wikipedia.org/wiki/Cgroups
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt
http://www.kernel.org/doc/Documentation/cgroups/cgroups.txt


Cgroups Quick Intro
• The interface to cgroups is not a syscall, but a pseudo-

filesystem (like /proc):

• The above lines mount the cgroup controller, create a sub-
cgroup called “example_session”, and place the current shell 
in that cgroup.  Any activity started by this session (regardless 
of daemonized or not!) will be managed by the “blkio” 
controller.  No, I didn’t say what blkio does yet...

• Each cgroup is a directory in the filesystem (provides familiar 
semantics like sub-directories, Unix permissions to manage 
the cgroup).  Processes in the cgroup appear in the “tasks” 
file.

mkdir -p /cgroup/blkio
mount -t cgroup -o blkio /cgroup/blkio
mkdir /cgroup/blkio/example_session
echo $$ > /cgroup/blkio/example_session/tasks
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Goal: Containerize 
Condor

• We want to expose the various partitioning 
and management techniques in the Linux 
kernel to Condor, allowing it to better 
manage CMS jobs.

• Think of it as a “blend” between a 
“normal” batch job and a container, to 
give Condor batch jobs features normally 
associated with virtualization.

Thursday, January 26, 12



Containers in Condor

• I break up the work for “containerizing 
Condor” into three categories:

• Isolation.  Protecting jobs from each other.

• Accounting.  Understanding the resources 
the batch jobs use.

• Resource Management.  Implementing 
policies about what resources and how 
much the jobs can access.
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Isolation
• Today, we offer isolation via giving a different UID 

to a batch job.

• In fact, we’ve been doing this for a LONG time 
on Linux.  We understand this model VERY well.

• Sometimes we do isolation via “social pressures” 
when appropriate.

• Maybe this is incomprehensible to the WLCG 
crowd, but let’s remember it’s sometimes 
appropriate.
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Isolation Models!

• Other isolation models exist though!  Think 
again about what containers provide:

• Process isolation (“PID Namespaces”).

• Filesystem isolation.  Users see different 
mounts.
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PID Namespaces
• When creating the process, Condor adds a new flag to 

clone().

• Processes are isolated to their own little world.

• Cannot signal/mess with anyone else on the node, even if 
they are running with the same UID.

• Great, easy, but actually disruptive to mess with clone() in the 
Condor code because the child no longer knows its “correct” 
PID.

• Actually, knowing the PID has been a place where this 
patch is contentious!  Think about the possible debugging 
headaches!
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Filesystem Namespaces

• One thing you could do is a chroot per 
batch slot.

• Erm, not so nice!

• Let’s use the fact that mounts unique to 
the job are tied to the job’s lifetime.

• Interesting mounts:

• World writable dirs: /tmp, /var/tmp.

• Working directories of other jobs from 
the same user.Thursday, January 26, 12



Chroots
• In Condor 7.7.5, users will be able to request a specific 

chroot.

• The sysadmins assign each chroot they have setup a 
name (such as “SL5”)

• The user adds “+RequestedChroot=SL5” to their 
submit file.

• Not feasible/convenient for isolation, but does allow 
you to provide SL5 environments to users who need 
it, but still run the newer kernel to do everything 
mentioned in this presentation.
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Mount Under Scratch

• In Condor 7.7.5, we introduce the 
MOUNT_UNDER_SCRATCH config 
parameter to the sysadmin.

• Any directory in the list will be mounted 
from the job’s scratch directory (auto-
cleaned by Condor after the job).

• Equivalent to:
mount --bind /var/lib/execute/condor/execute/dir_1234/tmp \
             /tmp
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No More Leaked Junk 
in /tmp!

• Sysadmins rejoice!
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Accounting

• We’ve done a poor job of accounting.

• CPU accounting is actually OK:

• Polling frequently enough, we can 
provide fairly accurate accounting, 
except in malicious or “strange” cases. 

• Memory accounting is HORRIBLE!

Of course, who decides 
what is strange!

Traditionally, Linux has some nice statistics per process.
However, we want this per job.  Let’s discuss how!
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CPU accounting, pre 
Condor 7.7.0

• Every 15 seconds, a snapshot of all processes is 
taken.

• Ancestry is established by looking at the parent 
PID for each process (and a few other techniques).

• Of course, isn’t very perfect!

• Look at how much CPU or memory is used by 
each process.

• Total “per-job” is the sum of all processes in the 
job.
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Memory Mess

• Summing up processes’s memory attributes 
is a MESS in Linux.

• This does not take into account sharing 
between processes.  In a modern Linux 
system - and in today’s jobs - there is a lot 
of sharing.

• Makes today’s batch systems wildly 
inaccurate for accounting.
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Condor in 7.7.0

• Create a cgroup per job relative to a base cgroup 
(admin-configured).  Base cgroup is done so you 
can manage Condor separately from the system.

• Somewhat equivalent to the following:

[root@red-d15n2 ~]# mkdir -p /cgroup/memory/condor/job_1234_5
[root@red-d15n2 ~]# echo $$ > /cgroup/memory/condor/job_1234_5/tasks
[root@red-d15n2 ~]# cat /cgroup/memory/condor/job_1234_5/tasks
13314
16521
[root@red-d15n2 ~]# bash
[root@red-d15n2 ~]# cat /cgroup/memory/condor/job_1234_5/tasks
13314
16522
16531
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Memory Accounting

• Tons of statistics can be mined from the 
memory controller and passed back to 
Condor.

[root@red-d15n2 ~]# cat /cgroup/memory/condor/memory.stat 
cache 0
rss 634880
mapped_file 0
pgpgin 602
pgpgout 447
swap 0
inactive_anon 0
active_anon 569344
inactive_file 0
active_file 0
unevictable 0
hierarchical_memory_limit 9223372036854775807
hierarchical_memsw_limit 9223372036854775807
total_cache 0
total_rss 634880
total_mapped_file 0
total_pgpgin 602
total_pgpgout 447
total_swap 0
total_inactive_anon 0
total_active_anon 569344
total_inactive_file 0
total_active_file 0
total_unevictable 0
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Block I/O

• Similar story for block I/O.  We can now 
access the information per job instead of 
per system or per process.

[root@red-d15n2 ~]# cat /cgroup/blkio/blkio.io_serviced 
8:48 Read 383
8:48 Write 0
8:48 Sync 383
8:48 Async 0
8:48 Total 383
8:32 Read 383
8:32 Write 0
8:32 Sync 383
8:32 Async 0
8:32 Total 383
8:16 Read 548172
8:16 Write 930060
8:16 Sync 996051
8:16 Async 482181
8:16 Total 1478232
8:0 Read 614395
8:0 Write 1024232
8:0 Sync 1074539
8:0 Async 564088
8:0 Total 1638627
Total 3117625
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Network Accounting

• We are extremely interested in knowing the 
per-job network I/O figures:

• Helps us understand if site planning is right.

• Give appropriate information back to users 
- and trace a bit about what they did on 
the network.

• Compare costs, dollar-for-dollar, against 
EC2.

http://osgtech.blogspot.com/2011/12/network-accounting-
for-condor.html

Thursday, January 26, 12

http://osgtech.blogspot.com/2011/12/network-accounting-for-condor.html
http://osgtech.blogspot.com/2011/12/network-accounting-for-condor.html
http://osgtech.blogspot.com/2011/12/network-accounting-for-condor.html
http://osgtech.blogspot.com/2011/12/network-accounting-for-condor.html


Network Namespaces
• What’s the solution?  Namespaces!

• The “network namespace” is a namespace that 
can interact with a subset of the network 
devices on the system.

• The general idea is to create a per-job network 
device, lock the job to that network device using 
namespaces, and then do iptables-based 
accounting for the network device.

• Approach is illustrated on next slides...
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Network Namespaces: 
Flipbook
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Network Namespaces: 
Flipbook
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Accounting Portion

• Each time a packet passes through an 
iptables rule, it is counted.

• While the job runs and finishes, iptables is 
periodically read, and each rule is published 
in the ClassAd.

• The final ClassAd goes to the accounting 
system, and we can send the “EC2 bill”.
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Resulting Chain
Chain JOB_12345 (2 references)
 pkts bytes target     prot opt in     out     source               destination         
    3   579 ACCEPT     all  --  veth0  em1     anywhere             129.93.0.0/16        /* OutgoingInternal */
    0     0 ACCEPT     all  --  veth0  em1     anywhere            !129.93.0.0/16        /* OutgoingExternal */
    7   674 ACCEPT     all  --  em1    veth0   129.93.0.0/16        anywhere             state RELATED,ESTABLISHED /* IncomingInternal */
    0     0 ACCEPT     all  --  em1    veth0  !129.93.0.0/16        anywhere             state RELATED,ESTABLISHED /* IncomingExternal */
    0     0 REJECT     all  --  any    any     anywhere             anywhere             reject-with icmp-port-unreachable

Resulting ClassAd Snippet

NetworkOutgoingInternal = 579
NetworkOutgoingExternal = 0

NetworkIncomingInternal = 674
NetworkIncomingExternal = 0
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Mount Statistics*

• /proc/self/mountstats provides a wealth of statistics - differs per filesystem, 
but NFS in particular provides a huge number of statistics (even for each op 
type!)

• With FS namespaces, should be possible to start doing this “per job”.

* Future work!  What NFS statistics do you want to 
see from the batch system per-job?

device hcc-gridnfs:/osg/data mounted on /opt/osg/data with fstype nfs4 statvers=1.0
	 opts:
	
rw,vers=4,rsize=32768,wsize=32768,namlen=255,acregmin=3,acregmax=60,acdirmin=30,acdirmax=60,h
ard,proto=tcp,timeo=600,retrans=2,sec=sys,clientaddr=172.16.15.2,minorversion=0,local_lock=no
ne
	 age:	568167
	 caps:	 caps=0x7ff7,wtmult=512,dtsize=32768,bsize=0,namlen=255
	 nfsv4:	 bm0=0xfdffafff,bm1=0xf9be3e,acl=0x0
	 sec:	flavor=1,pseudoflavor=1
	 events:	 60 1 0 0 0 3 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
	 bytes:	 0 0 0 0 0 0 0 0 
	 RPC iostats version: 1.0  p/v: 100003/4 (nfs)
	 xprt:	 tcp 0 0 31 0 0 84 84 0 84 0
	 per-op statistics
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Resource Management

• POSIX provides few “handles” for resource 
management.

• We can measure resources used (accounting).  
Getting better.

• However, what happens when the process uses 
more resources than requested?  Outside killing 
the job, not much!

• Thus, we encourage users to request the “worst 
case resource usage”, leading to poorer utilization.

Not surprisingly, we’ll investigate what the kernel has been 
up to!
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CPU sets / affinity

• CPU sets are a fairly well-known 
technique, used by most batch systems.

• If I ask for one core, I get access to 
precisely one core.

• Very hard partitioning - if I sit idle, no 
one else gets it.  Can adversely affect 
utilization.
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CPU fairsharing!
• With the cpu cgroup controller, we can fairshare the 

system’s overall CPU time.

• You can violate the amount of CPU you were 
given if there’s time available, but the amount 
allocated to each job.

• The amount of CPU you get are relative to the 
number of shares you have in your sibling cgroups.

[root@red-d15n2 ~]# cat /cgroup/cpu/cpu.shares 
1024
[root@red-d15n2 ~]# cat /cgroup/cpu/condor/cpu.shares 
512
[root@red-d15n2 ~]# cat /cgroup/cpu/condor/job_1234_0/cpu.shares 
128
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Memory Management
• Consider this situation in Condor: 2 jobs 

on a machine with 4GB RAM, asking for 
2GB each.  Consider the current usage:

Job 1
Job 2

2 GB

What happens if Job 2 allocates 1GB? 

1 GB
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Memory Management

• You could:

• (Today) Kill off Job 2.

• (Today) Do nothing.  There is plenty of 
memory on the system.

• (With memory cgroup) Swap out 1GB of 
Job 2, there’s a hard limit.
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Memory Management

Job 1 Job 2

2 GB

1 GB

What about if Job 2 allocates 1GB now?
The job must go into swap!

Today, you can kill the job or
Have random pages from both jobs swapped out.

With cgroups, you can also have a “soft limit” where 
Job 2 can take up 250MB more of RAM, but then only

have Job 2 swap.
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Memory in cgroups

• The memory cgroup provides both “soft” 
and “hard” limits.

• Soft limits allow you to use idle RAM, but 
when the system goes into swap, the 
“nice” job might see some interruption.

• Hard limits forces the “bad job” to start 
swapping once it hits 1-byte over the 
limit.
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Block I/O

• Perhaps unsurprisingly, the blkio controller 
can also do fairshare.

• Currently, this is not recursive - you cannot 
put Condor into /condor, and then 
fairshare between the jobs.  The jobs must 
go at block level.

• Unknown: how well does swapping get 
“fairshared”.
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Process Killing

• It’s a side-topic, but if the batch system 
leaks processes, you don’t manage the 
resource well!

• With PID namespaces, if the initial 
process (PID=1) dies, all other processes 
in that namespace are wiped out.

• If not using PID namespaces, we can use 
the “freeze” controller.
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Freeze Controller

• Put the job in a cgroup with the freeze 
controller.

• Write “FREEZE” into the correct file, and 
the kernel will immediately remove all 
processes from scheduler queue.

• Send a kill signal to all processes.

• Write “THAW” into the correct cgroup 
file, and the signals are delivered atomically.
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Network Management*
• The network accounting previously shown gives us a 

fantastic handle: a network device per job.

• There are newer technologies - e.g. OpenFlow - that 
expose the network as an API we can manipulate.

• Would be possible to dynamically create a VLAN for 
a user’s set of jobs.

• Or, trivially, assign jobs to a static VLAN (CMS jobs 
versus local jobs).  No changes needed to the 
network accounting work besides the script to 
create the iptables chains.

*(Some) Future Work
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What’s for Real?
• Things in a Condor release: Cgroups for CPU, block I/O and 

memory accounting.

• Things committed for next release: 
MOUNT_UNDER_SCRATCH, chroots

• Things proposed to team under evaluation: Cgroups for resource 
management.

• Patches rejected by Condor team: PID namespaces

• Things on a github playground: Network namespaces

• Things being explored, not implemented: Dynamic network 
manipulation with OpenFlow from the batch system, per-job NFS 
mount statistics.
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Conclusions

• We tend to view “the world” as black or white: is 
it a batch job or a virtual machine?

• By using containers, we have the ability to mix 
techniques normally associated with VMs into 
batch jobs.

• The power of partitioning and isolation, without 
the headaches of VM management.

• Basically, if you can do it in KVM (with respect 
to partitioning), you can do it in Condor!
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Conclusions
• This is completely different than clouds and virtual 

machines.

• Still a great long life in front of these things!  
Completely customize the OS, or your science 
depends on some odd kernel feature.  Let’s recall the 
costs of maintaining VMs though!

• Condor will still launch virtual machines instead of a 
process if asked.

• However, I believe this work makes significant progress, 
and maybe make sites “less interested” in clouds! 
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