
Exacycle:
1 Billion Core-Hours of Computational

Capacity for Researchers

David Konerding, Software Engineer
SARA HPC Cloud Computing Day 2011

http://research.google.com/university/exacycle_program.html

http://research.google.com/university/exacycle_program.html

1 billion core-hours of computational capacity for researchersThursday, April 07, 2011 at
4/07/2011 03:00:00 PM
Posted by Dan Belov, Principal Engineer and David Konerding, Software Engineer

We’re pleased to announce a new academic research grant program: Google Exacycle for Visiting
Faculty. Through this program, we’ll award up to 10 qualified researchers with at least 100 million core-
hours each, for a total of 1 billion core-hours. The program is focused on large-scale, CPU-bound batch
computations in research areas such as biomedicine, energy, finance, entertainment, and agriculture,
amongst others. For example, projects developing large-scale genomic search and alignment, massively
scaled Monte Carlo simulations, and sky survey image analysis could be an ideal fit.

Exacycle for Visiting Faculty expands upon our current efforts through University Relations to stimulate
advances in science and engineering research, and awardees will participate through the Visiting Faculty
Program. We invite full-time faculty members from universities worldwide to apply. All grantees, including
those outside of the U.S., will work on-site at specific Google offices in the U.S. or abroad. The exact
Google office location will be determined at the time of project selection.

We are excited to accept proposals starting today. The application deadline is 11:59 p.m. PST May 31,
2011. Applicants are encouraged to send in their proposals early as awards will be granted starting in
June.

More information and details on how to apply for a Google Exacycle for Visiting Faculty grant can be
found on the Google Exacycle for Visiting Faculty website.

Research Blog

http://googleresearch.blogspot.com/2011/04/1-billion-core-hours-of-computational.html
http://research.google.com/university/exacycle_program.html
http://research.google.com/university/exacycle_program.html
http://research.google.com/university/index.html
http://research.google.com/university/relations/visiting_faculty.html
http://research.google.com/university/relations/visiting_faculty.html
http://research.google.com/university/exacycle_program.html

Background: Who am I and why did I build Exacycle?
My background is in Protein and Nucleic Acid Structure and
Function (molecular simulations of DNA- and RNA- binding
proteins)

Background: Who am I and why did I build Exacycle?

Initially, I ran simulations (lasting a year, using 128 PEs, with
64-96x speedup) on Cray T3E. Well-balanced architecture.

But as computers got faster and cheaper, I started building my
own clusters (without the fast interconnect)

A year of Cray T3E simulations to test a force field change...

I started building my own clusters:
 Cheap Linux Clusters running AMBER MPI (circa 2001) with 100BT didn't
scale. AMBER MPI (circa 2005) with 1G didn't scale...

speedup

number of cores (processors)

I switched to running many independent simulations and
pooling results, which scales better (shared-nothing
architecture). Well, at least shared-very-little.

By running many MD simulations in parallel (embarrassingly
parallel), I could generate far more data (terabytes) for
much less money.

Unfortunately, this just traded off one IO bound problem for
another: now I had terabytes of trajectory data and trying to
analyze it would kill the NFS server

After observing this phenomenom across multiple discplines, I
concluded: scientists can't be productive using their existing
computing systems

○ efficient, parallel data analysis of modest data sets is very
hard with commodity hardware and software

○ typical solutions involve very expensive hardware and
software

○ There are some inexpensive (or free) software systems
that address this, but setup and tuning are hard.

=

Right Before Google (2006):
● I was a developer at LBL, working on pyGlobus and

pyGridware
● Scientists needed higher-level GUI to wrap multiple

applications, and application loops/ranges that execute on
the Grid

● ViCE: ViCE: Visual Computing Environment for Scientific
Workflows on the Grid (a long deprecated GTK GUI)

○ All computation on a server; BPEL-WS based (in
theory)

○ Similar tools (Taverna etc) used today are far better,
integrate well (??) with cloud & grid.

I came to Google to explore using MapReduce, GFS, and
BigTable for scientific data generation and analysis
This has worked out well, but...

GFS

MapReduce

BigTable

Collaborating with external scientists is tough

○ Became a bottleneck since external scientists don't have
access to Google systems

○ Googlers should replace their daily job with a shell script
every 6 months or so....

So I built exacycle to enable scientists to use Google resources
to run HPC cloud applications.

The dirurnal cycle defines resource availability

System capacity is typically peak + safety factor for overload

Constrained capacity at peak, significant off-peak capacity

Geo-targeting keeps most user traffic to Google frontends
local to servers in the region

Troughs "move" globally through datacenters during the day

Exacycle: basic description
Essentially a massive "Map" phase of a larger MapReduce
pipeline.

● Designed to run 100,000 to 1M concurrent work units
(mappers)

● You must be willing to tradeoff flexibility for scale
○ break your job into millions of work units
○ each work unit cannot exceed 1 core x 1G RAM x 1hour
○ no interprocess or intermachine communication

● time-to-completion is days, weeks, or months (latency is high,
but so is throughput)

● Applications must be compiled using Native Client, a security
sandbox originally designed for secure browser appls

● Visiting Faculty have access to GFS and BigTable for storage,
MapReduce for input prep and data analysis

● you need to write a "driver" script to submit work
○ For simple jobs that contain no complex dependencies,

can simply submit a command line job:

Exacycle: command line, script, and API interactions

exacycle submit \
 --jobname=hello_world \
 --binary="%(binarydir)s/hello_world" \
 --num_total_work_units=1000000 \
 --arguments="--tasknum %(tasknum)d"

100000 work units submitted.

● your driver needs to periodically check that work units
are completing successfully and submit more works

○ For simple jobs, command line monitoring:

● REST API could be easily integrated with Grid-style
master schedulers, Globus GRAM, Condor
DAGman, etc.

exacycle monitorjob \
 --jobname hello_world

Total work units: 1000000
Total finished: 549260
Total working: 457060

You can help scientists studying these diseases by simply running
a piece of software.

Folding@home is a distributed computing project -- people from
throughout the world download and run software to band together to
make one of the largest supercomputers in the world. Every computer
takes the project closer to our goals. Folding@home uses novel
computational methods coupled to distributed computing, to simulate
problems millions of times more challenging than previously achieved.

Protein (mis)folding is linked to disease, such as Alzheimer's, ALS,
Huntington's, Parkinson's disease, and many Cancers.
Moreover, when proteins do not fold correctly (i.e. "misfold"), there can be
serious consequences, including many well known diseases, such as
Alzheimer's, Mad Cow (BSE), CJD, ALS, Huntington's, Parkinson's
disease, and many Cancers and cancer-related syndromes.

http://folding.stanford.edu/English/Download
http://folding.stanford.edu/English/FAQ-Diseases

Molecular Simulation of ab Initio Protein Folding for a Millisecond Folder NTL9(1-39)
Vincent A. Voelz, Gregory R. Bowman, Kyle Beauchamp, and Vijay S. Pande
Departments of Chemistry and Structural Biology, and Biophysics Program, Stanford University, Stanford,
California 94305

Protein folding kinetics can be modelled as transitions between
substates. This graph shows an estimate of the graph and its
transition probabilities.

Folding@Home@Google

b2-Adrenergic Receptor: different polymorphic forms, point
mutations, and/or downregulation of this gene are associated
with nocturnal asthma, obesity and type 2 diabetes.

G-protein Coupled Receptors are cell membrane-bound
proteins useds for signal transduction

http://en.wikipedia.org/wiki/Point_mutation
http://en.wikipedia.org/wiki/Point_mutation
http://en.wikipedia.org/wiki/Gene_downregulation
http://en.wikipedia.org/wiki/Asthma
http://en.wikipedia.org/wiki/Obesity
http://en.wikipedia.org/wiki/Type_2_diabetes

Folding at Home is running on Exacycle as the initial
scientific user

Kai Kohlhoff, Visiting Faculty from Stanford (now a fulltime Research
Scientist at Google, is simulating a number of medically important protein
structures from the G-Protein Coupled Receptor family.

G-protein coupled receptors (GPCRs) are proteins that are important for
many biochemical processes in the human body. They act as signal
transducer in the membrane of cells.

GPCRs are involved in many human diseases and about half the volume
of the prescription drug market consists of drugs targeting GPCRs. Size
of the GPCR market: well over $25 Billion Revenue/year.

To avoid side effects, improve the effectiveness of existing drugs and
develop entirely new drugs, knowing the mode of action of GPCRs is
essential.

3 other projects have signed on as Visiting Faculty (2 more coming)

Current simulations are based on medically important
protein receptors

Our simulations include:
● beta-2 adrenergic receptor:

○ respiration, flight-or-fight response, glucose supply
○ major target for asthma medications

● beta-2 adrenergic receptor:
○ cardiac output
○ major target heart disease medications

● Adenosine A2A receptor:
○ vasodilation of cornoary arteries
○ major target for abnormal heart patterns
○ research target for Parkinson's
○ caffeine binds to this receptor

GPCR Simulation methodology

● Molecular dynamics simulations using Gromacs (www.
gromacs.org)

● 100,000+ concurrent simulations with no communication
(114Kcore seconds/second = 1 Billion core-hours/year)

● Use random number seed and different starting structures to

explore phase space

● Cluster generated structures and build Markov State Models
representing probability of transition between substates

● Sample the substates and re-seed the simulations to avoid
getting stuck in local minima

● Can simultaneously run any number of different proteins and
small molecules as distinct experiments

http://www.gromacs.org
http://www.gromacs.org

Preliminary Results
● Roughly 2 milliseconds of simulation time in six months

● 4th largest Folding@Home provider (trailing only aggregate
groups which have existed for years)

● Simulations execute 378TFlop/sec (similar to 17th fastest
supercomputer in the world) (embarrassingly parallel code)

● over 260Tbytes of raw data generated- we are starting
large-scale analysis by applying FlumeJava1, Dremel2 and
Pregel3 to existing algorithms including MSMBuilder4

1. http://research.google.
com/pubs/DistributedSystemsandParallelComputing.html

2. http://www.google.com/research/pubs/pub36632.html
3. http://googleresearch.blogspot.com/2009/06/large-scale-

graph-computing-at-google.html
4. https://simtk.org/home/msmbuilder

http://research.google.com/pubs/DistributedSystemsandParallelComputing.html
http://research.google.com/pubs/DistributedSystemsandParallelComputing.html
http://www.google.com/research/pubs/pub36632.html
http://googleresearch.blogspot.com/2009/06/large-scale-graph-computing-at-google.html
http://googleresearch.blogspot.com/2009/06/large-scale-graph-computing-at-google.html
https://simtk.org/home/msmbuilder

