Using the BiG Grid HPC Cloud Infrastructure

Han Rauwerda
Wim de Leeuw
Timo M. Breit

MAD/IBU
Swammerdam Institute of Life Sciences
University of Amsterdam
Transcriptomics Introduction

MAD/IBU (group Timo Breit): transcriptomics
• Analysis of gene transcription: wet lab + dry lab.

Transcriptomics experiments:
• 10 to >100 samples; 60 x 10^3 to >20 x 10^6 datapoints / sample;
• Many research questions/ many experimental designs
• Diverse platforms, many different wet-lab approaches
• De facto standard tools for many different tasks
 • e.g. array design, mixed effect ANOVA, module finding, construction of (Bayesian) networks, assembly of de novo transcriptomes, etc.
 • Analyses explorative.

Set up Problem Solving Environments (PSEs) for Transcriptomics
Transcriptomics Problem Solving Environments

Requirements for Transcriptomics PSEs

• Transcriptomics PSEs must be able to invoke HPC resources;
 – Most tasks embarrassingly parallel
• Computational different per experiment, resources must be scalable.
• Functional needs: experiment & researcher
• Flexible interfacing needed between local and HPC environment;
• Easy installation of transcriptomics specific software;

<table>
<thead>
<tr>
<th></th>
<th>Grid</th>
<th>Cloud</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible interfacing</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Root privileges</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Scalability</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
BiG Grid HPC Cloud Beta testing

1 year of testing in the BiG Grid HPC Cloud Beta testing:
- Has become invaluable resource in daily research
- Used very frequently (over 8 times our quorum!)
- Stable middleware (Open Nebula)
- Support very good and well organized.

Worked on:
- interface to the cloud from a local environment
- cloud images to accommodate specific Problem Solving Environments
- usage of cloud images in education
Interfacing the cloud from a local environment

• Disk Image: standard Ubuntu with ssh & R
• Machine images with 4/8 cores, 2/4GB RAM
• External network
• Firewall exception, access using ssh-key
• How it works:
 – User has local R session
 – User starts VM’s in Cloud UI (Nebula)
 – In R: poll cloud to recruit machines (1min.)
 – StartCluster()
The β testing - Results & Conclusion

1. Microarray analysis: *Calculation of F-values in a 36 * 135 k transcriptomics study using of 5000 permutations on 16 cores.*
 - worked out of the box (including the standard cluster logic)
 - no indication of large overhead

2. Ageing study - *conditional correlation*
 - 6 timepoints, 4 tissues, 3 replicates and 35 k measurements + pathological data
 - Question: find per-gene correlation with pathological data (staining)
 - Spearman Correlation conditional on chronological age (not normal)
 - p-values through 10k permutations (4000 core hours / tissue)

Co-expression network analysis
- 6k * 6k correlation matrix (conditional on chronological age)
- calculation of this matrix pararellized. (5.000 core hours / tissue)
 - Development during testing period (real life!)
 - Many ideas were tried (clusters with 32 - 64 cores)
 - Cloud cluster: like a real cluster
 - Virtually no hick-ups of the system, no waiting times
 - User: it is a very convenient system
Cloud images to accommodate specific PSEs

- PSEs for array design
- PSEs for sequence alignment (non redundant GenBank)
- PSEs for module networks (Lemone)
- PSEs for Microsoft Windows applications (Genmapp)
- PSEs for Next Generation Sequencing Transcriptomics
 - de novo transcriptome assembly of mite with 80% identity
 - mapping of Illumina data on reference genomes
- Cloud in omics Education
 - prepare and adapt one image for a course
 - serve any number of students.
Conclusion

• Beta testing resulted in set of very useful PSEs
• Next gen sequencing: focus on cloud
 – (re-)use of EC-images
• Command line skills: biologists start to invest.
• Usage will soar: good accounting mechanism necessary
• Size of biological data increases:
 – bandwidth and storage buffers needed as access points to grid/cloud

Many thanks to the HPC cloud beta testing team!!

And looking forward to the new BiG Grid HPC Cloud